算法设计:最大子数组的乘积

2021年3月11日17:07:05 发表评论 682 次浏览

本文概述

给定一个同时包含正整数和负整数的数组, 请找到最大乘积子数组的乘积。预期的时间复杂度为O(n), 并且只能使用O(1)的额外空间。

例子:

Input: arr[] = {6, -3, -10, 0, 2}
Output:   180  // The subarray is {6, -3, -10}

Input: arr[] = {-1, -3, -10, 0, 60}
Output:   60  // The subarray is {60}

Input: arr[] = {-2, -3, 0, -2, -40}
Output:   80  // The subarray is {-2, -40}

推荐:请在"实践首先, 在继续解决方案之前。

以下解决方案假定给定的输入数组始终具有正输出。该解决方案适用于上述所有情况。它不适用于{0、0, -20、0}, {0、0、0}等数组。等等。可以轻松修改解决方案以处理这种情况。

它类似于

最大总和连续子数组

问题。这里唯一要注意的是, 最大乘积也可以通过以前一个元素乘以该元素结尾的最小(负)乘积来获得。例如, 在数组{12, 2, -3, -5, -6, -2}中, 当我们位于元素-2时, 最大乘积是的乘积, 最小乘积以-6和-2结尾。

C ++

// C++ program to find Maximum Product Subarray
#include <bits/stdc++.h>
using namespace std;
  
/* Returns the product of max product subarray. 
Assumes that the given array always has a subarray 
with product more than 1 */
int maxSubarrayProduct( int arr[], int n)
{
     // max positive product ending at the current position
     int max_ending_here = 1;
  
     // min negative product ending at the current position
     int min_ending_here = 1;
  
     // Initialize overall max product
     int max_so_far = 1;
     int flag = 0;
     /* Traverse through the array. Following values are 
     maintained after the i'th iteration: 
     max_ending_here is always 1 or some positive product 
                     ending with arr[i] 
     min_ending_here is always 1 or some negative product 
                     ending with arr[i] */
     for ( int i = 0; i < n; i++) {
         /* If this element is positive, update max_ending_here. 
         Update min_ending_here only if min_ending_here is 
         negative */
         if (arr[i] > 0) {
             max_ending_here = max_ending_here * arr[i];
             min_ending_here = min(min_ending_here * arr[i], 1);
             flag = 1;
         }
  
         /* If this element is 0, then the maximum product 
         cannot end here, make both max_ending_here and 
         min_ending_here 0 
         Assumption: Output is alway greater than or equal 
                     to 1. */
         else if (arr[i] == 0) {
             max_ending_here = 1;
             min_ending_here = 1;
         }
  
         
        /* If element is negative. This is tricky  
         max_ending_here can either be 1 or positive.  
         min_ending_here can either be 1 or negative.  
         next max_ending_here will always be prev.  
         min_ending_here * arr[i] , next min_ending_here  
         will be 1 if prev max_ending_here is 1, otherwise  
         next min_ending_here will be prev max_ending_here *  
         arr[i] */
  
         else {
             int temp = max_ending_here;
             max_ending_here = max(min_ending_here * arr[i], 1);
             min_ending_here = temp * arr[i];
         }
  
         // update max_so_far, if needed
         if (max_so_far < max_ending_here)
             max_so_far = max_ending_here;
     }
     if (flag == 0 && max_so_far == 1)
         return 0;
     return max_so_far;
}
  
// Driver code
int main()
{
     int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
     int n = sizeof (arr) / sizeof (arr[0]);
     cout << "Maximum Sub array product is "
          << maxSubarrayProduct(arr, n);
     return 0;
}
  
// This is code is contributed by rathbhupendra

C

// C program to find Maximum Product Subarray
#include <stdio.h>
  
// Utility functions to get minimum of two integers
int min( int x, int y) { return x < y ? x : y; }
  
// Utility functions to get maximum of two integers
int max( int x, int y) { return x > y ? x : y; }
  
/* Returns the product of max product subarray. 
Assumes that the given array always has a subarray 
with product more than 1 */
int maxSubarrayProduct( int arr[], int n)
{
     // max positive product ending at the current position
     int max_ending_here = 1;
  
     // min negative product ending at the current position
     int min_ending_here = 1;
  
     // Initialize overall max product
     int max_so_far = 1;
     int flag = 0;
  
     /* Traverse through the array. Following values are 
     maintained after the i'th iteration: 
     max_ending_here is always 1 or some positive product 
                     ending with arr[i] 
     min_ending_here is always 1 or some negative product 
                     ending with arr[i] */
     for ( int i = 0; i < n; i++) {
         /* If this element is positive, update max_ending_here. 
         Update min_ending_here only if min_ending_here is 
         negative */
         if (arr[i] > 0) {
             max_ending_here = max_ending_here * arr[i];
             min_ending_here = min(min_ending_here * arr[i], 1);
             flag = 1;
         }
  
         /* If this element is 0, then the maximum product 
         cannot end here, make both max_ending_here and 
         min_ending_here 0 
         Assumption: Output is alway greater than or equal 
                     to 1. */
         else if (arr[i] == 0) {
             max_ending_here = 1;
             min_ending_here = 1;
         }
  
         /* If element is negative. This is tricky 
         max_ending_here can either be 1 or positive. 
         min_ending_here can either be 1 or negative. 
         next min_ending_here will always be prev. 
         max_ending_here * arr[i] next max_ending_here 
         will be 1 if prev min_ending_here is 1, otherwise 
         next max_ending_here will be prev min_ending_here * 
         arr[i] */
         else {
             int temp = max_ending_here;
             max_ending_here = max(min_ending_here * arr[i], 1);
             min_ending_here = temp * arr[i];
         }
  
         // update max_so_far, if needed
         if (max_so_far < max_ending_here)
             max_so_far = max_ending_here;
     }
     if (flag == 0 && max_so_far == 1)
         return 0;
     return max_so_far;
  
     return max_so_far;
}
  
// Driver Program to test above function
int main()
{
     int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
     int n = sizeof (arr) / sizeof (arr[0]);
     printf ( "Maximum Sub array product is %d" , maxSubarrayProduct(arr, n));
     return 0;
}

Java

// Java program to find maximum product subarray
import java.io.*;
  
class ProductSubarray {
  
     // Utility functions to get minimum of two integers
     static int min( int x, int y) { return x < y ? x : y; }
  
     // Utility functions to get maximum of two integers
     static int max( int x, int y) { return x > y ? x : y; }
  
     /* Returns the product of max product subarray.
     Assumes that the given array always has a subarray
     with product more than 1 */
     static int maxSubarrayProduct( int arr[])
     {
         int n = arr.length;
         // max positive product ending at the current position
         int max_ending_here = 1 ;
  
         // min negative product ending at the current position
         int min_ending_here = 1 ;
  
         // Initialize overall max product
         int max_so_far = 1 ;
         int flag = 0 ;
  
         /* Traverse through the array. Following
         values are maintained after the ith iteration:
         max_ending_here is always 1 or some positive product
                         ending with arr[i]
         min_ending_here is always 1 or some negative product
                         ending with arr[i] */
         for ( int i = 0 ; i < n; i++) {
             /* If this element is positive, update max_ending_here.
                 Update min_ending_here only if min_ending_here is
                 negative */
             if (arr[i] > 0 ) {
                 max_ending_here = max_ending_here * arr[i];
                 min_ending_here = min(min_ending_here * arr[i], 1 );
                 flag = 1 ;
             }
  
             /* If this element is 0, then the maximum product cannot
             end here, make both max_ending_here and min_ending
             _here 0
             Assumption: Output is alway greater than or equal to 1. */
             else if (arr[i] == 0 ) {
                 max_ending_here = 1 ;
                 min_ending_here = 1 ;
             }
  
             /* If element is negative. This is tricky
             max_ending_here can either be 1 or positive.
             min_ending_here can either be 1 or negative.
             next min_ending_here will always be prev.
             max_ending_here * arr[i]
             next max_ending_here will be 1 if prev
             min_ending_here is 1, otherwise
             next max_ending_here will be 
                         prev min_ending_here * arr[i] */
             else {
                 int temp = max_ending_here;
                 max_ending_here = max(min_ending_here * arr[i], 1 );
                 min_ending_here = temp * arr[i];
             }
  
             // update max_so_far, if needed
             if (max_so_far < max_ending_here)
                 max_so_far = max_ending_here;
         }
  
         if (flag == 0 && max_so_far == 1 )
             return 0 ;
         return max_so_far;
     }
  
     public static void main(String[] args)
     {
  
         int arr[] = { 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 };
         System.out.println( "Maximum Sub array product is "
                            + maxSubarrayProduct(arr));
     }
} /*This code is contributed by Devesh Agrawal*/

python

# Python program to find maximum product subarray
  
# Returns the product of max product subarray.
# Assumes that the given array always has a subarray
# with product more than 1
def maxsubarrayproduct(arr):
  
     n = len (arr)
  
     # max positive product ending at the current position
     max_ending_here = 1
  
     # min positive product ending at the current position
     min_ending_here = 1
  
     # Initialize maximum so far
     max_so_far = 1
     flag = 0
  
     # Traverse throughout the array. Following values
     # are maintained after the ith iteration:
     # max_ending_here is always 1 or some positive product
     # ending with arr[i]
     # min_ending_here is always 1 or some negative product
     # ending with arr[i]
     for i in range ( 0 , n):
  
         # If this element is positive, update max_ending_here.
         # Update min_ending_here only if min_ending_here is
         # negative
         if arr[i] > 0 :
             max_ending_here = max_ending_here * arr[i]
             min_ending_here = min (min_ending_here * arr[i], 1 )
             flag = 1
  
         # If this element is 0, then the maximum product cannot
         # end here, make both max_ending_here and min_ending_here 0
         # Assumption: Output is alway greater than or equal to 1.
         elif arr[i] = = 0 :
             max_ending_here = 1
             min_ending_here = 1
  
         # If element is negative. This is tricky
         # max_ending_here can either be 1 or positive.
         # min_ending_here can either be 1 or negative.
         # next min_ending_here will always be prev.
         # max_ending_here * arr[i]
         # next max_ending_here will be 1 if prev
         # min_ending_here is 1, otherwise
         # next max_ending_here will be prev min_ending_here * arr[i]
         else :
             temp = max_ending_here
             max_ending_here = max (min_ending_here * arr[i], 1 )
             min_ending_here = temp * arr[i]
         if (max_so_far < max_ending_here):
             max_so_far = max_ending_here
              
     if flag = = 0 and max_so_far = = 1 :
         return 0
     return max_so_far
  
# Driver function to test above function
arr = [ 1 , - 2 , - 3 , 0 , 7 , - 8 , - 2 ]
print "Maximum product subarray is" , maxsubarrayproduct(arr)
  
# This code is contributed by Devesh Agrawal

C#

// C# program to find maximum product subarray
using System;
  
class GFG {
  
     // Utility functions to get minimum of two integers
     static int min( int x, int y) { return x < y ? x : y; }
  
     // Utility functions to get maximum of two integers
     static int max( int x, int y) { return x > y ? x : y; }
  
     /* Returns the product of max product subarray.
     Assumes that the given array always has a subarray
     with product more than 1 */
     static int maxSubarrayProduct( int [] arr)
     {
         int n = arr.Length;
         // max positive product ending at the current
         // position
         int max_ending_here = 1;
  
         // min negative product ending at the current
         // position
         int min_ending_here = 1;
  
         // Initialize overall max product
         int max_so_far = 1;
         int flag = 0;
  
         /* Traverse through the array. Following
         values are maintained after the ith iteration:
         max_ending_here is always 1 or some positive
         product ending with arr[i] min_ending_here is
         always 1 or some negative product ending 
         with arr[i] */
         for ( int i = 0; i < n; i++) {
             /* If this element is positive, update 
             max_ending_here. Update min_ending_here 
             only if min_ending_here is negative */
             if (arr[i] > 0) {
                 max_ending_here = max_ending_here * arr[i];
                 min_ending_here = min(min_ending_here
                                           * arr[i], 1);
                 flag = 1;
             }
  
             /* If this element is 0, then the maximum 
             product cannot end here, make both 
             max_ending_here and min_ending_here 0
             Assumption: Output is alway greater than or
             equal to 1. */
             else if (arr[i] == 0) {
                 max_ending_here = 1;
                 min_ending_here = 1;
             }
  
             /* If element is negative. This is tricky
             max_ending_here can either be 1 or positive.
             min_ending_here can either be 1 or negative.
             next min_ending_here will always be prev.
             max_ending_here * arr[i]
             next max_ending_here will be 1 if prev
             min_ending_here is 1, otherwise
             next max_ending_here will be 
             prev min_ending_here * arr[i] */
             else {
                 int temp = max_ending_here;
                 max_ending_here = max(min_ending_here
                                           * arr[i], 1);
                 min_ending_here = temp * arr[i];
             }
  
             // update max_so_far, if needed
             if (max_so_far < max_ending_here)
                 max_so_far = max_ending_here;
         }
  
         if (flag == 0 && max_so_far == 1)
             return 0;
  
         return max_so_far;
     }
  
     public static void Main()
     {
  
         int [] arr = { 1, -2, -3, 0, 7, -8, -2 };
  
         Console.WriteLine( "Maximum Sub array product is "
                           + maxSubarrayProduct(arr));
     }
}
  
/*This code is contributed by vt_m*/

的PHP

<?php
// php program to find Maximum Product
// Subarray
  
// Utility functions to get minimum of
// two integers
function minn ( $x , $y ) 
{
     return $x < $y ? $x : $y ;
}
  
// Utility functions to get maximum of
// two integers
function maxx ( $x , $y ) 
{
     return $x > $y ? $x : $y ; 
}
  
/* Returns the product of max product
subarray. Assumes that the given array
always has a subarray with product
more than 1 */
function maxSubarrayProduct( $arr , $n )
{
      
     // max positive product ending at 
     // the current position
     $max_ending_here = 1;
  
     // min negative product ending at
     // the current position
     $min_ending_here = 1;
  
     // Initialize overall max product
     $max_so_far = 1;
     $flag = 0;
  
     /* Traverse through the array.
     Following values are maintained 
     after the i'th iteration: 
     max_ending_here is always 1 or
     some positive product ending with
     arr[i] min_ending_here is always
     1 or some negative product ending
     with arr[i] */
     for ( $i = 0; $i < $n ; $i ++)
     {
          
         /* If this element is positive, update max_ending_here. Update
         min_ending_here only if 
         min_ending_here is negative */
         if ( $arr [ $i ] > 0)
         {
             $max_ending_here = 
             $max_ending_here * $arr [ $i ];
              
             $min_ending_here = 
                 min ( $min_ending_here
                         * $arr [ $i ], 1);
             $flag = 1;
         }
  
         /* If this element is 0, then the
         maximum product cannot end here, make both max_ending_here and 
         min_ending_here 0
         Assumption: Output is alway 
         greater than or equal to 1. */
         else if ( $arr [ $i ] == 0)
         {
             $max_ending_here = 1;
             $min_ending_here = 1;
         }
  
         /* If element is negative. This
         is tricky max_ending_here can
         either be 1 or positive. 
         min_ending_here can either be 1 or
         negative. next min_ending_here will
         always be prev. max_ending_here * 
         arr[i] next max_ending_here will be
         1 if prev min_ending_here is 1, otherwise next max_ending_here will
         be prev min_ending_here * arr[i] */
         else
         {
             $temp = $max_ending_here ;
             $max_ending_here =
                 max ( $min_ending_here
                         * $arr [ $i ], 1);
                              
             $min_ending_here =
                         $temp * $arr [ $i ];
         }
  
         // update max_so_far, if needed
         if ( $max_so_far < $max_ending_here )
             $max_so_far = $max_ending_here ;
     }
  
     if ( $flag ==0 && $max_so_far ==1) return 0; 
     return $max_so_far ;
}
  
// Driver Program to test above function
     $arr = array (1, -2, -3, 0, 7, -8, -2);
     $n = sizeof( $arr ) / sizeof( $arr [0]);
     echo ( "Maximum Sub array product is " );
     echo (maxSubarrayProduct( $arr , $n ));
  
// This code is contributed by nitin mittal 
?>

输出如下:

Maximum Sub array product is 112

时间复杂度:

上)

辅助空间:

O(1)

本文作者:德莱杰·贾恩并由lsbin小组审查。如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。

木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: