算法题:Knight巡回问题的Warnsdorff算法实现

2021年4月12日11:40:03 发表评论 1,412 次浏览

本文概述

问题:一个骑士被放置在一个空棋盘的第一块上, 并且根据国际象棋的规则移动, 必须对每个广场精确地访问一次。

以下是Knight覆盖所有单元的示例路径。下面的网格表示一个8 x 8格的棋盘。单元格中的数字表示骑士的移动次数。

骑士旅行问题

我们已经讨论过回溯算法, 解决骑士之旅。在这篇文章中沃恩斯多夫的启发式讨论。

Warnsdorff的规则:

  1. 我们可以从骑士在板上的任何初始位置开始。
  2. 我们总是以最小的程度(最少的未访问相邻数)移动到相邻的未访问正方形。

算法也可以更普遍地应用于任何图形。

一些定义:

  • 如果P可以通过一个骑士的动作移动到Q, 并且尚未访问Q, 则可以从P位置访问Q。
  • 位置P的可访问性是可从P访问的位置数。

算法:

  1. 将P设置为板上的随机初始位置
  2. 用移动号" 1"将板标记在P上
  3. 对于从2到板上的平方数的每个移动编号, 请执行以下操作:
    • 令S为可从P访问的位置集合。
    • 将P设置为S中具有最小辅助功能的位置
    • 用当前移动编号将板标记在P上
  4. 返回标有标记的木板-每个方块都会标有其访问所在的移动编号。

下面是上述算法的实现。

C ++

//C++ program to for Kinight's tour problem usin
//Warnsdorff's algorithm
#include <bits/stdc++.h>
#define N 8
  
//Move pattern on basis of the change of
//x coordinates and y coordinates respectively
static int cx[N] = {1, 1, 2, 2, -1, -1, -2, -2};
static int cy[N] = {2, -2, 1, -1, 2, -2, 1, -1};
  
//function restricts the knight to remain within
//the 8x8 chessboard
bool limits( int x, int y)
{
     return ((x>= 0 && y>= 0) && (x <N && y <N));
}
  
/* Checks whether a square is valid and empty or not */
bool isempty( int a[], int x, int y)
{
     return (limits(x, y)) && (a[y*N+x] <0);
}
  
/* Returns the number of empty squares adjacent
    to (x, y) */
int getDegree( int a[], int x, int y)
{
     int count = 0;
     for ( int i = 0; i <N; ++i)
         if (isempty(a, (x + cx[i]), (y + cy[i])))
             count++;
  
     return count;
}
  
//Picks next point using Warnsdorff's heuristic.
//Returns false if it is not possible to pick
//next point.
bool nextMove( int a[], int *x, int *y)
{
     int min_deg_idx = -1, c, min_deg = (N+1), nx, ny;
  
     //Try all N adjacent of (*x, *y) starting
     //from a random adjacent. Find the adjacent
     //with minimum degree.
     int start = rand ()%N;
     for ( int count = 0; count <N; ++count)
     {
         int i = (start + count)%N;
         nx = *x + cx[i];
         ny = *y + cy[i];
         if ((isempty(a, nx, ny)) &&
            (c = getDegree(a, nx, ny)) <min_deg)
         {
             min_deg_idx = i;
             min_deg = c;
         }
     }
  
     //IF we could not find a next cell
     if (min_deg_idx == -1)
         return false ;
  
     //Store coordinates of next point
     nx = *x + cx[min_deg_idx];
     ny = *y + cy[min_deg_idx];
  
     //Mark next move
     a[ny*N + nx] = a[(*y)*N + (*x)]+1;
  
     //Update next point
     *x = nx;
     *y = ny;
  
     return true ;
}
  
/* displays the chessboard with all the
   legal knight's moves */
void print( int a[])
{
     for ( int i = 0; i <N; ++i)
     {
         for ( int j = 0; j <N; ++j)
             printf ( "%d\t" , a[j*N+i]);
         printf ( "\n" );
     }
}
  
/* checks its neighbouring sqaures */
/* If the knight ends on a square that is one
    knight's move from the beginning square, then tour is closed */
bool neighbour( int x, int y, int xx, int yy)
{
     for ( int i = 0; i <N; ++i)
         if (((x+cx[i]) == xx)&&((y + cy[i]) == yy))
             return true ;
  
     return false ;
}
  
/* Generates the legal moves using warnsdorff's
   heuristics. Returns false if not possible */
bool findClosedTour()
{
     //Filling up the chessboard matrix with -1's
     int a[N*N];
     for ( int i = 0; i<N*N; ++i)
         a[i] = -1;
  
     //Randome initial position
     int sx = rand ()%N;
     int sy = rand ()%N;
  
     //Current points are same as initial points
     int x = sx, y = sy;
     a[y*N+x] = 1; //Mark first move.
  
     //Keep picking next points using
     //Warnsdorff's heuristic
     for ( int i = 0; i <N*N-1; ++i)
         if (nextMove(a, &x, &y) == 0)
             return false ;
  
     //Check if tour is closed (Can end
     //at starting point)
     if (!neighbour(x, y, sx, sy))
         return false ;
  
     print(a);
     return true ;
}
  
//Driver code
int main()
{
     //To make sure that different random
     //initial positions are picked.
     srand ( time (NULL));
  
     //While we don't get a solution
     while (!findClosedTour())
     {
     ;
     }
  
     return 0;
}

Java

//Java program to for Kinight's tour problem using
//Warnsdorff's algorithm
import java.util.concurrent.ThreadLocalRandom;
  
class GFG 
{
     public static final int N = 8 ;
  
     //Move pattern on basis of the change of
     //x coordinates and y coordinates respectively
     public static final int cx[] = { 1 , 1 , 2 , 2 , - 1 , - 1 , - 2 , - 2 };
     public static final int cy[] = { 2 , - 2 , 1 , - 1 , 2 , - 2 , 1 , - 1 };
  
     //function restricts the knight to remain within
     //the 8x8 chessboard
     boolean limits( int x, int y)
     {
         return ((x>= 0 && y>= 0 ) &&
                  (x <N && y <N));
     }
  
     /* Checks whether a square is valid and
     empty or not */
     boolean isempty( int a[], int x, int y) 
     {
         return (limits(x, y)) && (a[y * N + x] <0 );
     }
  
     /* Returns the number of empty squares 
     adjacent to (x, y) */
     int getDegree( int a[], int x, int y) 
     {
         int count = 0 ;
         for ( int i = 0 ; i <N; ++i)
             if (isempty(a, (x + cx[i]), (y + cy[i])))
                 count++;
  
         return count;
     }
  
     //Picks next point using Warnsdorff's heuristic.
     //Returns false if it is not possible to pick
     //next point.
     Cell nextMove( int a[], Cell cell) 
     {
         int min_deg_idx = - 1 , c, min_deg = (N + 1 ), nx, ny;
  
         //Try all N adjacent of (*x, *y) starting
         //from a random adjacent. Find the adjacent
         //with minimum degree.
         int start = ThreadLocalRandom.current().nextInt( 1000 ) % N;
         for ( int count = 0 ; count <N; ++count)
         {
             int i = (start + count) % N;
             nx = cell.x + cx[i];
             ny = cell.y + cy[i];
             if ((isempty(a, nx, ny)) &&
                 (c = getDegree(a, nx, ny)) <min_deg)
             {
                 min_deg_idx = i;
                 min_deg = c;
             }
         }
  
         //IF we could not find a next cell
         if (min_deg_idx == - 1 )
             return null ;
  
         //Store coordinates of next point
         nx = cell.x + cx[min_deg_idx];
         ny = cell.y + cy[min_deg_idx];
  
         //Mark next move
         a[ny * N + nx] = a[(cell.y) * N + 
                            (cell.x)] + 1 ;
  
         //Update next point
         cell.x = nx;
         cell.y = ny;
  
         return cell;
     }
  
     /* displays the chessboard with all the
     legal knight's moves */
     void print( int a[])
     {
         for ( int i = 0 ; i <N; ++i) 
         {
             for ( int j = 0 ; j <N; ++j)
                 System.out.printf( "%d\t" , a[j * N + i]);
             System.out.printf( "\n" );
         }
     }
  
     /* checks its neighbouring sqaures */
     /* If the knight ends on a square that is one
     knight's move from the beginning square, then tour is closed */
     boolean neighbour( int x, int y, int xx, int yy) 
     {
         for ( int i = 0 ; i <N; ++i)
             if (((x + cx[i]) == xx) && 
                 ((y + cy[i]) == yy))
                 return true ;
  
         return false ;
     }
  
     /* Generates the legal moves using warnsdorff's
     heuristics. Returns false if not possible */
     boolean findClosedTour() 
     {
         //Filling up the chessboard matrix with -1's
         int a[] = new int [N * N];
         for ( int i = 0 ; i <N * N; ++i)
             a[i] = - 1 ;
  
         //initial position
         int sx = 3 ;
         int sy = 2 ;
  
         //Current points are same as initial points
         Cell cell = new Cell(sx, sy);
  
         a[cell.y * N + cell.x] = 1 ; //Mark first move.
  
         //Keep picking next points using
         //Warnsdorff's heuristic
         Cell ret = null ;
         for ( int i = 0 ; i <N * N - 1 ; ++i)
         {
             ret = nextMove(a, cell);
             if (ret == null )
                 return false ;
         }
  
         //Check if tour is closed (Can end
         //at starting point)
         if (!neighbour(ret.x, ret.y, sx, sy))
             return false ;
  
         print(a);
         return true ;
     }
  
     //Driver Code
     public static void main(String[] args)
     {
         //While we don't get a solution
         while (! new GFG().findClosedTour())
         {
             ;
         }
     }
}
  
class Cell 
{
     int x;
     int y;
  
     public Cell( int x, int y)
     {
         this .x = x;
         this .y = y;
     }
}
  
//This code is contributed by SaeedZarinfam

输出如下:

59    14    63    32    1    16    19    34    
62    31    60    15    56    33    2    17    
13    58    55    64    49    18    35    20    
30    61    42    57    54    51    40    3    
43    12    53    50    41    48    21    36    
26    29    44    47    52    39    4    7    
11    46    27    24    9    6    37    22    
28    25    10    45    38    23    8    5

哈密顿路径问题通常是NP难的。在实践中, 沃恩斯多夫的启发式方法成功地找到了线性时间的解决方案。

你知道吗?

"在8×8的板上, 恰好有26, 534, 728, 821, 064个定向封闭巡回路线(即, 沿着同一路径沿相反方向行驶的两个巡回路线分别计算在内, 旋转和反射也是如此)。无方向的封闭式游览的数量是该数字的一半, 因为每个游览都可以反向追踪!"

如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请写评论。

木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: