层次顺序二叉树遍历是什么?如何实现?

2021年4月3日18:56:07 发表评论 1,098 次浏览

本文概述

树的层次顺序遍历是树的广度优先遍历

级顺序二叉树遍历1

上面树的级别顺序遍历为1 2 3 4 5

方法1(使用函数打印给定级别)

算法:

此方法基本上有两个函数。一种是打印给定级别(printGivenLevel)的所有节点, 另一种是打印树的级别顺序遍历(printLevelorder)。 printLevelorder利用printGivenLevel从根开始一个接一个地打印所有级别的节点。

/*Function to print level order traversal of tree*/
printLevelorder(tree)
for d = 1 to height(tree)
   printGivenLevel(tree, d);

/*Function to print all nodes at a given level*/
printGivenLevel(tree, level)
if tree is NULL then return;
if level is 1, then
    print(tree->data);
else if level greater than 1, then
    printGivenLevel(tree->left, level-1);
    printGivenLevel(tree->right, level-1);

实现 

C ++

// Recursive CPP program for level
// order traversal of Binary Tree
#include <bits/stdc++.h>
using namespace std;
 
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class node
{
     public :
     int data;
     node* left, *right;
};
 
/* Function protoypes */
void printGivenLevel(node* root, int level);
int height(node* node);
node* newNode( int data);
 
/* Function to print level
order traversal a tree*/
void printLevelOrder(node* root)
{
     int h = height(root);
     int i;
     for (i = 1; i <= h; i++)
         printGivenLevel(root, i);
}
 
/* Print nodes at a given level */
void printGivenLevel(node* root, int level)
{
     if (root == NULL)
         return ;
     if (level == 1)
         cout << root->data << " " ;
     else if (level > 1)
     {
         printGivenLevel(root->left, level-1);
         printGivenLevel(root->right, level-1);
     }
}
 
/* Compute the "height" of a tree -- the number of
     nodes along the longest path from the root node
     down to the farthest leaf node.*/
int height(node* node)
{
     if (node == NULL)
         return 0;
     else
     {
         /* compute the height of each subtree */
         int lheight = height(node->left);
         int rheight = height(node->right);
 
         /* use the larger one */
         if (lheight > rheight)
             return (lheight + 1);
         else return (rheight + 1);
     }
}
 
/* Helper function that allocates
a new node with the given data and
NULL left and right pointers. */
node* newNode( int data)
{
     node* Node = new node();
     Node->data = data;
     Node->left = NULL;
     Node->right = NULL;
 
     return (Node);
}
 
/* Driver code*/
int main()
{
     node *root = newNode(1);
     root->left = newNode(2);
     root->right = newNode(3);
     root->left->left = newNode(4);
     root->left->right = newNode(5);
 
     cout << "Level Order traversal of binary tree is \n" ;
     printLevelOrder(root);
 
     return 0;
}
 
// This code is contributed by rathbhupendra

C

// Recursive C program for level
// order traversal of Binary Tree
#include <stdio.h>
#include <stdlib.h>
 
/* A binary tree node has data, pointer to left child
    and a pointer to right child */
struct node
{
     int data;
     struct node* left, *right;
};
 
/* Function protoypes */
void printGivenLevel( struct node* root, int level);
int height( struct node* node);
struct node* newNode( int data);
 
/* Function to print level order traversal a tree*/
void printLevelOrder( struct node* root)
{
     int h = height(root);
     int i;
     for (i=1; i<=h; i++)
         printGivenLevel(root, i);
}
 
/* Print nodes at a given level */
void printGivenLevel( struct node* root, int level)
{
     if (root == NULL)
         return ;
     if (level == 1)
         printf ( "%d " , root->data);
     else if (level > 1)
     {
         printGivenLevel(root->left, level-1);
         printGivenLevel(root->right, level-1);
     }
}
 
/* Compute the "height" of a tree -- the number of
     nodes along the longest path from the root node
     down to the farthest leaf node.*/
int height( struct node* node)
{
     if (node==NULL)
         return 0;
     else
     {
         /* compute the height of each subtree */
         int lheight = height(node->left);
         int rheight = height(node->right);
 
         /* use the larger one */
         if (lheight > rheight)
             return (lheight+1);
         else return (rheight+1);
     }
}
 
/* Helper function that allocates a new node with the
    given data and NULL left and right pointers. */
struct node* newNode( int data)
{
     struct node* node = ( struct node*)
                         malloc ( sizeof ( struct node));
     node->data = data;
     node->left = NULL;
     node->right = NULL;
 
     return (node);
}
 
/* Driver program to test above functions*/
int main()
{
     struct node *root = newNode(1);
     root->left        = newNode(2);
     root->right       = newNode(3);
     root->left->left  = newNode(4);
     root->left->right = newNode(5);
 
     printf ( "Level Order traversal of binary tree is \n" );
     printLevelOrder(root);
 
     return 0;
}

Java

// Recursive Java program for level
// order traversal of Binary Tree
 
/* Class containing left and right child of current
    node and key value*/
class Node
{
     int data;
     Node left, right;
     public Node( int item)
     {
         data = item;
         left = right = null ;
     }
}
 
class BinaryTree
{
     // Root of the Binary Tree
     Node root;
 
     public BinaryTree()
     {
         root = null ;
     }
 
     /* function to print level order traversal of tree*/
     void printLevelOrder()
     {
         int h = height(root);
         int i;
         for (i= 1 ; i<=h; i++)
             printGivenLevel(root, i);
     }
 
     /* Compute the "height" of a tree -- the number of
     nodes along the longest path from the root node
     down to the farthest leaf node.*/
     int height(Node root)
     {
         if (root == null )
            return 0 ;
         else
         {
             /* compute  height of each subtree */
             int lheight = height(root.left);
             int rheight = height(root.right);
             
             /* use the larger one */
             if (lheight > rheight)
                 return (lheight+ 1 );
             else return (rheight+ 1 );
         }
     }
 
     /* Print nodes at the given level */
     void printGivenLevel (Node root , int level)
     {
         if (root == null )
             return ;
         if (level == 1 )
             System.out.print(root.data + " " );
         else if (level > 1 )
         {
             printGivenLevel(root.left, level- 1 );
             printGivenLevel(root.right, level- 1 );
         }
     }
     
     /* Driver program to test above functions */
     public static void main(String args[])
     {
        BinaryTree tree = new BinaryTree();
        tree.root= new Node( 1 );
        tree.root.left= new Node( 2 );
        tree.root.right= new Node( 3 );
        tree.root.left.left= new Node( 4 );
        tree.root.left.right= new Node( 5 );
        
        System.out.println("Level order traversal of
                                  binary tree is ");
        tree.printLevelOrder();
     }
}

Python3

# Recursive Python program for level
# order traversal of Binary Tree
 
# A node structure
class Node:
 
     # A utility function to create a new node
     def __init__( self , key):
         self .data = key
         self .left = None
         self .right = None
 
 
# Function to  print level order traversal of tree
def printLevelOrder(root):
     h = height(root)
     for i in range ( 1 , h + 1 ):
         printGivenLevel(root, i)
 
 
# Print nodes at a given level
def printGivenLevel(root , level):
     if root is None :
         return
     if level = = 1 :
         print (root.data, end = " " )
     elif level > 1 :
         printGivenLevel(root.left , level - 1 )
         printGivenLevel(root.right , level - 1 )
 
 
""" Compute the height of a tree--the number of nodes
     along the longest path from the root node down to
     the farthest leaf node
"""
def height(node):
     if node is None :
         return 0
     else :
         # Compute the height of each subtree
         lheight = height(node.left)
         rheight = height(node.right)
 
         #Use the larger one
         if lheight > rheight :
             return lheight + 1
         else :
             return rheight + 1
 
# Driver program to test above function
root = Node( 1 )
root.left = Node( 2 )
root.right = Node( 3 )
root.left.left = Node( 4 )
root.left.right = Node( 5 )
 
print ( "Level order traversal of binary tree is -" )
printLevelOrder(root)
 
#This code is contributed by Nikhil Kumar Singh(nickzuck_007)

C#

// Recursive c# program for level
// order traversal of Binary Tree
using System;
 
/* Class containing left and right
    child of current node and key value*/
public class Node
{
     public int data;
     public Node left, right;
     public Node( int item)
     {
         data = item;
         left = right = null ;
     }
}
 
class GFG
{
     // Root of the Binary Tree
     public Node root;
     
     public void BinaryTree()
     {
         root = null ;
     }
     
     /* function to print level order
        traversal of tree*/
     public virtual void printLevelOrder()
     {
         int h = height(root);
         int i;
         for (i = 1; i <= h; i++)
         {
             printGivenLevel(root, i);
         }
     }
     
     /* Compute the "height" of a tree --
     the number of nodes along the longest
     path from the root node down to the
     farthest leaf node.*/
     public virtual int height(Node root)
     {
         if (root == null )
         {
             return 0;
         }
         else
         {
             /* compute height of each subtree */
             int lheight = height(root.left);
             int rheight = height(root.right);
     
             /* use the larger one */
             if (lheight > rheight)
             {
                 return (lheight + 1);
             }
             else
             {
                 return (rheight + 1);
             }
         }
     }
     
     /* Print nodes at the given level */
     public virtual void printGivenLevel(Node root, int level)
     {
         if (root == null )
         {
             return ;
         }
         if (level == 1)
         {
             Console.Write(root.data + " " );
         }
         else if (level > 1)
         {
             printGivenLevel(root.left, level - 1);
             printGivenLevel(root.right, level - 1);
         }
     }
 
// Driver Code
public static void Main( string [] args)
{
     GFG tree = new GFG();
     tree.root = new Node(1);
     tree.root.left = new Node(2);
     tree.root.right = new Node(3);
     tree.root.left.left = new Node(4);
     tree.root.left.right = new Node(5);
     
     Console.WriteLine( "Level order traversal " +
                           "of binary tree is " );
     tree.printLevelOrder();
}
}
 
// This code is contributed by Shrikant13

输出如下: 

Level order traversal of binary tree is - 
1 2 3 4 5

时间复杂度:

O(n ^ 2)在最坏的情况下。对于倾斜的树, printGivenLevel()花费O(n)时间, 其中n是倾斜的树中的节点数。因此printLevelOrder()的时间复杂度为O(n)+ O(n-1)+ O(n-2)+ .. + O(1), 即O(n ^ 2)。

空间复杂度:

O(n)在最坏的情况下。对于倾斜的树, printGivenLevel()将O(n)空间用于调用堆栈。对于平衡树, 调用堆栈使用O(log n)空间(即平衡树的高度)。

方法2(使用队列)

算法:

对于每个节点, 首先访问该节点, 然后将其子节点放入FIFO队列中。

printLevelorder(tree)
1) Create an empty queue q
2) temp_node = root /*start from root*/
3) Loop while temp_node is not NULL
    a) print temp_node->data.
    b) Enqueue temp_node’s children (first left then right children) to q
    c) Dequeue a node from q and assign it’s value to temp_node

实现

这是上述算法的简单实现。使用最大大小为500的数组实现队列。我们也可以将队列实现为链表。

C ++

/* C++ program to print level
     order traversal using STL */
#include <bits/stdc++.h>
using namespace std;
 
// A Binary Tree Node
struct Node
{
     int data;
     struct Node *left, *right;
};
 
// Iterative method to find height of Binary Tree
void printLevelOrder(Node *root)
{
     // Base Case
     if (root == NULL)  return ;
 
     // Create an empty queue for level order traversal
     queue<Node *> q;
 
     // Enqueue Root and initialize height
     q.push(root);
 
     while (q.empty() == false )
     {
         // Print front of queue and remove it from queue
         Node *node = q.front();
         cout << node->data << " " ;
         q.pop();
 
         /* Enqueue left child */
         if (node->left != NULL)
             q.push(node->left);
 
         /*Enqueue right child */
         if (node->right != NULL)
             q.push(node->right);
     }
}
 
// Utility function to create a new tree node
Node* newNode( int data)
{
     Node *temp = new Node;
     temp->data = data;
     temp->left = temp->right = NULL;
     return temp;
}
 
// Driver program to test above functions
int main()
{
     // Let us create binary tree shown in above diagram
     Node *root = newNode(1);
     root->left = newNode(2);
     root->right = newNode(3);
     root->left->left = newNode(4);
     root->left->right = newNode(5);
 
     cout << "Level Order traversal of binary tree is \n" ;
     printLevelOrder(root);
     return 0;
}

C

// Iterative Queue based C program
// to do level order traversal
// of Binary Tree
#include <stdio.h>
#include <stdlib.h>
#define MAX_Q_SIZE 500
 
/* A binary tree node has data, pointer to left child
    and a pointer to right child */
struct node
{
     int data;
     struct node* left;
     struct node* right;
};
 
/* frunction prototypes */
struct node** createQueue( int *, int *);
void enQueue( struct node **, int *, struct node *);
struct node *deQueue( struct node **, int *);
 
/* Given a binary tree, print its nodes in level order
    using array for implementing queue */
void printLevelOrder( struct node* root)
{
     int rear, front;
     struct node **queue = createQueue(&front, &rear);
     struct node *temp_node = root;
 
     while (temp_node)
     {
         printf ( "%d " , temp_node->data);
 
         /*Enqueue left child */
         if (temp_node->left)
             enQueue(queue, &rear, temp_node->left);
 
         /*Enqueue right child */
         if (temp_node->right)
             enQueue(queue, &rear, temp_node->right);
 
         /*Dequeue node and make it temp_node*/
         temp_node = deQueue(queue, &front);
     }
}
 
/*UTILITY FUNCTIONS*/
struct node** createQueue( int *front, int *rear)
{
     struct node **queue =
         ( struct node **) malloc ( sizeof ( struct node*)
                                        *MAX_Q_SIZE);
 
     *front = *rear = 0;
     return queue;
}
 
void enQueue( struct node **queue, int *rear, struct node *new_node)
{
     queue[*rear] = new_node;
     (*rear)++;
}
 
struct node *deQueue( struct node **queue, int *front)
{
     (*front)++;
     return queue[*front - 1];
}
 
/* Helper function that allocates a new node with the
    given data and NULL left and right pointers. */
struct node* newNode( int data)
{
     struct node* node = ( struct node*)
                         malloc ( sizeof ( struct node));
     node->data = data;
     node->left = NULL;
     node->right = NULL;
 
     return (node);
}
 
/* Driver program to test above functions*/
int main()
{
     struct node *root = newNode(1);
     root->left        = newNode(2);
     root->right       = newNode(3);
     root->left->left  = newNode(4);
     root->left->right = newNode(5);
 
     printf ( "Level Order traversal of binary tree is \n" );
     printLevelOrder(root);
 
     return 0;
}

Java

// Iterative Queue based Java program
// to do level order traversal
// of Binary Tree
 
/* importing the inbuilt java classes
    required for the program */
import java.util.Queue;
import java.util.LinkedList;
 
/* Class to represent Tree node */
class Node {
     int data;
     Node left, right;
 
     public Node( int item) {
         data = item;
         left = null ;
         right = null ;
     }
}
 
/* Class to print Level Order Traversal */
class BinaryTree {
 
     Node root;
 
     /* Given a binary tree. Print
      its nodes in level order
      using array for implementing queue  */
     void printLevelOrder()
     {
         Queue<Node> queue = new LinkedList<Node>();
         queue.add(root);
         while (!queue.isEmpty())
         {
 
             /* poll() removes the present head.
             For more information on poll() visit
             http://www.lsbin.com/java/
             util/linkedlist_poll.htm */
             Node tempNode = queue.poll();
             System.out.print(tempNode.data + " " );
 
             /*Enqueue left child */
             if (tempNode.left != null ) {
                 queue.add(tempNode.left);
             }
 
             /*Enqueue right child */
             if (tempNode.right != null ) {
                 queue.add(tempNode.right);
             }
         }
     }
 
     public static void main(String args[])
     {
         /* creating a binary tree and entering
          the nodes */
         BinaryTree tree_level = new BinaryTree();
         tree_level.root = new Node( 1 );
         tree_level.root.left = new Node( 2 );
         tree_level.root.right = new Node( 3 );
         tree_level.root.left.left = new Node( 4 );
         tree_level.root.left.right = new Node( 5 );
 
         System.out.println("Level order traversal
                             of binary tree is - ");
         tree_level.printLevelOrder();
     }
}

Python3

# Python program to print level
# order traversal using Queue
 
# A node structure
class Node:
     # A utility function to create a new node
     def __init__( self , key):
         self .data = key
         self .left = None
         self .right = None
 
# Iterative Method to print the
# height of a binary tree
def printLevelOrder(root):
     # Base Case
     if root is None :
         return
     
     # Create an empty queue
     # for level order traversal
     queue = []
 
     # Enqueue Root and initialize height
     queue.append(root)
 
     while ( len (queue) > 0 ):
       
         # Print front of queue and
         # remove it from queue
         print (queue[ 0 ].data)
         node = queue.pop( 0 )
 
         #Enqueue left child
         if node.left is not None :
             queue.append(node.left)
 
         # Enqueue right child
         if node.right is not None :
             queue.append(node.right)
 
#Driver Program to test above function
root = Node( 1 )
root.left = Node( 2 )
root.right = Node( 3 )
root.left.left = Node( 4 )
root.left.right = Node( 5 )
 
print ( "Level Order Traversal of binary tree is -" )
printLevelOrder(root)
#This code is contributed by Nikhil Kumar Singh(nickzuck_007)

C#

// Iterative Queue based C# program
// to do level order traversal
// of Binary Tree
 
using System;
using System.Collections.Generic;
 
/* Class to represent Tree node */
public class Node
{
     public int data;
     public Node left, right;
 
     public Node( int item)
     {
         data = item;
         left = null ;
         right = null ;
     }
}
 
/* Class to print Level Order Traversal */
public class BinaryTree
{
 
     Node root;
 
     /* Given a binary tree. Print
     its nodes in level order using
      array for implementing queue */
     void printLevelOrder()
     {
         Queue<Node> queue = new Queue<Node>();
         queue.Enqueue(root);
         while (queue.Count != 0)
         {
 
             /* poll() removes the present head.
             For more information on poll() visit
             http://www.lsbin.com/
             java/util/linkedlist_poll.htm */
             Node tempNode = queue.Dequeue();
             Console.Write(tempNode.data + " " );
 
             /*Enqueue left child */
             if (tempNode.left != null )
             {
                 queue.Enqueue(tempNode.left);
             }
 
             /*Enqueue right child */
             if (tempNode.right != null )
             {
                 queue.Enqueue(tempNode.right);
             }
         }
     }
 
     // Driver code
     public static void Main()
     {
         /* creating a binary tree and entering
         the nodes */
         BinaryTree tree_level = new BinaryTree();
         tree_level.root = new Node(1);
         tree_level.root.left = new Node(2);
         tree_level.root.right = new Node(3);
         tree_level.root.left.left = new Node(4);
         tree_level.root.left.right = new Node(5);
 
         Console.WriteLine( "Level order traversal " +
                             "of binary tree is - " );
         tree_level.printLevelOrder();
     }
}
 
/* This code contributed by PrinciRaj1992 */

输出如下: 

Level order traversal of binary tree is - 
1 2 3 4 5

时间复杂度:O(n)其中n是二叉树中的节点数

空间复杂度:O(n)其中n是二叉树中的节点数

参考文献:

http://en.wikipedia.org/wiki/Breadth-first_traversal

如果你发现上述程序/算法或其他解决同一问题的方法有任何错误, 请发表评论。

木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: