如何实现Strassen的矩阵乘法算法?

2021年3月18日15:34:37 发表评论 693 次浏览

Strassen的矩阵乘法方法是一种典型的分而治之算法。我们已经讨论了Strassen的算法这里。但是, 让我们再次了解分而治之方法背后的实质并加以实施。

先决条件:要求看到这个帖子在进一步理解之前。

实现

// CPP program to implement Strassen’s Matrix 
// Multiplication Algorithm 
#include <bits/stdc++.h>
using namespace std;
typedef long long lld;
  
/* Strassen's Algorithm for matrix multiplication
    Complexity:    O(n^2.808) */
  
inline lld** MatrixMultiply(lld** a, lld** b, int n, int l, int m)
{
     lld** c = new lld*[n];
     for ( int i = 0; i < n; i++)
         c[i] = new lld[m];
  
     for ( int i = 0; i < n; i++) {
         for ( int j = 0; j < m; j++) {
             c[i][j] = 0;
             for ( int k = 0; k < l; k++) {
                 c[i][j] += a[i][k] * b[k][j];
             }
         }
     }
     return c;
}
  
inline lld** Strassen(lld** a, lld** b, int n, int l, int m)
{
     if (n == 1 || l == 1 || m == 1) 
         return MatrixMultiply(a, b, n, l, m);
  
     lld** c = new lld*[n];
     for ( int i = 0; i < n; i++)
         c[i] = new lld[m];
  
     int adjN = (n >> 1) + (n & 1);
     int adjL = (l >> 1) + (l & 1);
     int adjM = (m >> 1) + (m & 1);
  
     lld**** As = new lld***[2];
     for ( int x = 0; x < 2; x++) {
         As[x] = new lld**[2];
         for ( int y = 0; y < 2; y++) {
             As[x][y] = new lld*[adjN];
             for ( int i = 0; i < adjN; i++) {
                 As[x][y][i] = new lld[adjL];
                 for ( int j = 0; j < adjL; j++) {
                     int I = i + (x & 1) * adjN;
                     int J = j + (y & 1) * adjL;
                     As[x][y][i][j] = (I < n && J < l) ? a[I][J] : 0;
                 }
             }
         }
     }
  
     lld**** Bs = new lld***[2];
     for ( int x = 0; x < 2; x++) {
         Bs[x] = new lld**[2];
         for ( int y = 0; y < 2; y++) {
             Bs[x][y] = new lld*[adjN];
             for ( int i = 0; i < adjL; i++) {
                 Bs[x][y][i] = new lld[adjM];
                 for ( int j = 0; j < adjM; j++) {
                     int I = i + (x & 1) * adjL;
                     int J = j + (y & 1) * adjM;
                     Bs[x][y][i][j] = (I < l && J < m) ? b[I][J] : 0;
                 }
             }
         }
     }
  
     lld*** s = new lld**[10];
     for ( int i = 0; i < 10; i++) {
         switch (i) {
         case 0:
             s[i] = new lld*[adjL];
             for ( int j = 0; j < adjL; j++) {
                 s[i][j] = new lld[adjM];
                 for ( int k = 0; k < adjM; k++) {
                     s[i][j][k] = Bs[0][1][j][k] - Bs[1][1][j][k];
                 }
             }
             break ;
         case 1:
             s[i] = new lld*[adjN];
             for ( int j = 0; j < adjN; j++) {
                 s[i][j] = new lld[adjL];
                 for ( int k = 0; k < adjL; k++) {
                     s[i][j][k] = As[0][0][j][k] + As[0][1][j][k];
                 }
             }
             break ;
         case 2:
             s[i] = new lld*[adjN];
             for ( int j = 0; j < adjN; j++) {
                 s[i][j] = new lld[adjL];
                 for ( int k = 0; k < adjL; k++) {
                     s[i][j][k] = As[1][0][j][k] + As[1][1][j][k];
                 }
             }
             break ;
         case 3:
             s[i] = new lld*[adjL];
             for ( int j = 0; j < adjL; j++) {
                 s[i][j] = new lld[adjM];
                 for ( int k = 0; k < adjM; k++) {
                     s[i][j][k] = Bs[1][0][j][k] - Bs[0][0][j][k];
                 }
             }
             break ;
         case 4:
             s[i] = new lld*[adjN];
             for ( int j = 0; j < adjN; j++) {
                 s[i][j] = new lld[adjL];
                 for ( int k = 0; k < adjL; k++) {
                     s[i][j][k] = As[0][0][j][k] + As[1][1][j][k];
                 }
             }
             break ;
         case 5:
             s[i] = new lld*[adjL];
             for ( int j = 0; j < adjL; j++) {
                 s[i][j] = new lld[adjM];
                 for ( int k = 0; k < adjM; k++) {
                     s[i][j][k] = Bs[0][0][j][k] + Bs[1][1][j][k];
                 }
             }
             break ;
         case 6:
             s[i] = new lld*[adjN];
             for ( int j = 0; j < adjN; j++) {
                 s[i][j] = new lld[adjL];
                 for ( int k = 0; k < adjL; k++) {
                     s[i][j][k] = As[0][1][j][k] - As[1][1][j][k];
                 }
             }
             break ;
         case 7:
             s[i] = new lld*[adjL];
             for ( int j = 0; j < adjL; j++) {
                 s[i][j] = new lld[adjM];
                 for ( int k = 0; k < adjM; k++) {
                     s[i][j][k] = Bs[1][0][j][k] + Bs[1][1][j][k];
                 }
             }
             break ;
         case 8:
             s[i] = new lld*[adjN];
             for ( int j = 0; j < adjN; j++) {
                 s[i][j] = new lld[adjL];
                 for ( int k = 0; k < adjL; k++) {
                     s[i][j][k] = As[0][0][j][k] - As[1][0][j][k];
                 }
             }
             break ;
         case 9:
             s[i] = new lld*[adjL];
             for ( int j = 0; j < adjL; j++) {
                 s[i][j] = new lld[adjM];
                 for ( int k = 0; k < adjM; k++) {
                     s[i][j][k] = Bs[0][0][j][k] + Bs[0][1][j][k];
                 }
             }
             break ;
         }
     }
  
     lld*** p = new lld**[7];
     p[0] = Strassen(As[0][0], s[0], adjN, adjL, adjM);
     p[1] = Strassen(s[1], Bs[1][1], adjN, adjL, adjM);
     p[2] = Strassen(s[2], Bs[0][0], adjN, adjL, adjM);
     p[3] = Strassen(As[1][1], s[3], adjN, adjL, adjM);
     p[4] = Strassen(s[4], s[5], adjN, adjL, adjM);
     p[5] = Strassen(s[6], s[7], adjN, adjL, adjM);
     p[6] = Strassen(s[8], s[9], adjN, adjL, adjM);
  
     for ( int i = 0; i < adjN; i++) {
         for ( int j = 0; j < adjM; j++) {
             c[i][j] = p[4][i][j] + p[3][i][j] - p[1][i][j] + p[5][i][j];
             if (j + adjM < m)
                 c[i][j + adjM] = p[0][i][j] + p[1][i][j];
             if (i + adjN < n)
                 c[i + adjN][j] = p[2][i][j] + p[3][i][j];
             if (i + adjN < n && j + adjM < m)
                 c[i + adjN][j + adjM] = p[4][i][j] + p[0][i][j] - p[2][i][j] - p[6][i][j];
         }
     }
  
     for ( int x = 0; x < 2; x++) {
         for ( int y = 0; y < 2; y++) {
             for ( int i = 0; i < adjN; i++) {
                 delete [] As[x][y][i];
             }
             delete [] As[x][y];
         }
         delete [] As[x];
     }
     delete [] As;
  
     for ( int x = 0; x < 2; x++) {
         for ( int y = 0; y < 2; y++) {
             for ( int i = 0; i < adjL; i++) {
                 delete [] Bs[x][y][i];
             }
             delete [] Bs[x][y];
         }
         delete [] Bs[x];
     }
     delete [] Bs;
  
     for ( int i = 0; i < 10; i++) {
         switch (i) {
         case 0:
         case 3:
         case 5:
         case 7:
         case 9:
             for ( int j = 0; j < adjL; j++) {
                 delete [] s[i][j];
             }
             break ;
         case 1:
         case 2:
         case 4:
         case 6:
         case 8:
             for ( int j = 0; j < adjN; j++) {
                 delete [] s[i][j];
             }
             break ;
         }
         delete [] s[i];
     }
     delete [] s;
  
     for ( int i = 0; i < 7; i++) {
         for ( int j = 0; j < (n >> 1); j++) {
             delete [] p[i][j];
         }
         delete [] p[i];
     }
     delete [] p;
  
     return c;
}
  
int main()
{
     lld** matA;
     matA = new lld*[2];
     for ( int i = 0; i < 2; i++)
         matA[i] = new lld[3];
     matA[0][0] = 1;
     matA[0][1] = 2;
     matA[0][2] = 3;
     matA[1][0] = 4;
     matA[1][1] = 5;
     matA[1][2] = 6;
  
     lld** matB;
     matB = new lld*[3];
     for ( int i = 0; i < 3; i++)
         matB[i] = new lld[2];
     matB[0][0] = 7;
     matB[0][1] = 8;
     matB[1][0] = 9;
     matB[1][1] = 10;
     matB[2][0] = 11;
     matB[2][1] = 12;
  
     lld** matC = Strassen(matA, matB, 2, 3, 2);
     for ( int i = 0; i < 2; i++) {
         for ( int j = 0; j < 2; j++) {
             printf ( "%lld " , matC[i][j]);
         }
         printf ( "\n" );
     }
  
     return 0;
}
Output:  58   64
         139  154

木子山

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: